Lee-Vortex Formation in Free-Slip Stratified Flow over Ridges. Part II: Mechanisms of Vorticity and PV Production in Nonlinear Viscous Wakes
نویسندگان
چکیده
The formation of orographic wakes and vortices is studied within the context of numerically simulated viscous flow with uniform basic-state wind and stability past elongated free-slip ridges. The viscosity and thermal diffusivity are sufficiently large that the onset of small-scale turbulence is suppressed. It is found in Part I of this study that wake formation in the viscous flow is closely tied to the dynamics of a low-level hydraulic-jumplike feature in the lee of the obstacle. Here the role of the hydraulic jump in producing the vorticity and potential vorticity (PV) of the viscous wake is considered. A method for diagnosing vorticity production is developed based on a propagator analysis of the Lagrangian vorticity equation that generalizes Cauchy’s formula for the evolution of vorticity in a Lagrangian framework. Application of the method reveals that the vertical vorticity of the wake originates through baroclinic generation and tilting in the mountain wave upstream of the jump. However, upstream of the jump the vertical vorticity is relatively weak. Vertical stretching in the jump then amplifies this vorticity significantly to produce the pronounced vertical vorticity anomalies along the shear lines at the lateral edges of the wake. The PV of the wake is found to result mainly from thermal dissipation in the jump. In particular, thermal diffusion tends to diabatically modify the potential temperature field in the jump so as to create PV from the vertical vorticity already present. From the standpoint of PV conservation, the presence of both diabatic cooling (by thermal diffusion) and vertical vorticity at the base of the jump produces a vertical flux of PV through the lower boundary. The advective fluxes of PV along each side of the wake are then primarily balanced at steady state by fluxes of PV through the obstacle surface.
منابع مشابه
Lee-Vortex Formation in Free-Slip Stratified Flow over Ridges. Part I: Comparison of Weakly Nonlinear Inviscid Theory and Fully Nonlinear Viscous Simulations
The formation of lee wakes and vortices is explored in the context of stratified flow with uniform basic-state wind and stability past elongated free-slip ridges. The theory of inviscid flow past a ridge of small nondimensional height e is revisited using a weakly nonlinear semianalytic model to compute flow fields through O(e2). Consistent with previous work, the weakly nonlinear solutions sho...
متن کاملNumerical Simulation of the Incompressible Laminar Flow Over a Square Cylinder
Simulation of fluid flow over a square cylinder can be performed in order to understand the physics of the flow over bluff bodies. In the current study, incompressible laminar flow over a confined square cylinder, with variable blockage factor has been simulated numerically, using computational fluid dynamics (CFD). The focus has been on vortex-induced vibration (VIV) of the cylinder. Vorticity...
متن کاملHALL AND LON-SLIP EFFECTS ON MAGNETO-MICROPOLAR FLUID WITH COMBINED FORCED AND FREE CONVECTION IN BOUNDARY LAYER FLOW OVER A HORIZONTAL PLATE WITH VISCOUS DISSIPATION
In this paper, we study the effects of Hall and ion-slip currents on the steady magneto-micropolar of a viscous incompressible and electrically conducting fluid over a horizontal plate by taking in to account the viscous dissipation effects. By means of similarity solutions, deviation of fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using qu...
متن کاملBoundary layer Viscous Flow of Nanofluids and Heat Transfer Over a Nonlinearly Isothermal Stretching Sheet in the Presence of Heat Generation/Absorption and Slip Boundary Conditions
The steady two-dimensional flow of a viscous nanofluid of magnetohydrodynamic (MHD) flow and heattransfer characteristics for the boundary layer flow over a nonlinear stretching sheet is considered. Theflow is caused by a nonlinear stretching sheet with effects of velocity, temperature and concentrationslips. Problem formulation is developed in the pre...
متن کاملEXISTENCE OF A STEADY FLOW WITH A BOUNDED VORTEX IN AN UNBOUNDED DOMAIN
We prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. The data prescribed is the rearrangement class of the vorticity field. The corresponding stream function satisfies a semilinear elliptic partial differential equation. The result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearra...
متن کامل